CS 250B: Modern Computer Systems

Hardware Acceleration Case Study
Neural Network Accelerators

(1
>

Sang-Woo Jun

Many slides adapted from
Hyoukjun Kwon‘s Gatech “Designing CNN Accelerators”

Usefulness of Deep Neural Networks

J No need to further emphasize the obvious

Convolutional Neural Network for
Image/Video Recognition

LMidForehead

REyetrowEnd REyebrowMid LEysbrowMid LEyebrowtng

ROrtailipper (optional) LOrbitalUpper(optionsi)

REyeicLower

RE
ROrbitallowse

ImageNet Top-5 Classification Accuracy
Over the Years

15 million images 1000 classes in the ImageNet challenge

0.3
0.25
b AlexNet, The Beginning
th.l 0.2 [\: > | “The first* fast**
c GPU-accelerated Deep Convolutional Neural Network
-_8 0.15 to win an image recognition contest
S
= 0.1
2 16.7% ' 23.3%
© —
O 0.05
003
0

2010 2011 2012 2013 2014 2015 2016 2017

image-net.org “ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017,” 2017

Convolutional Neural Networks Overview

goldfish: 0.002%
shark: 0.08%
magpie: 0. 02%

jl> Palace: 89%

Paper towel: 1.4%

Convolution Layer

Convolution Layer

Convolution Layer
Fully Connected Layer
Fully Connected Layer
Fully Connected Layer

Spatula: 0.001%

“Convolution” “Neural Network”

Training vs. Inference

d Training: Tuning parameters using training data
o Backpropagation using stochastic gradient descent is the most popular algorithm
o Training in data centers and distributing trained data is a common model*

o Because training algorithm changes rapidly, GPU cluster is the most popular
hardware (Low demand for application-specific accelerators)

 Inference: Determining class of a new input data
o Using a trained model, determine class of a new input data
o Inference usually occurs close to clients

o Low-latency and power-efficiency is required
(High demand for application specific accelerators)

Deep Neural Networks (“Fully Connected™)

. Each layer may have a different number of neurons

Simple Neural Network

=
Wﬁ%\\

S AN
AN
S KA RG]

OB S IATL X RS
WX HA LSS “ EN

2N

O

£ S

NN

@ Input Layer (O Hidden Layer

Deep Learning Neural Network

A A B8
A R NN

AT A o A X
AV AT AT :
\\‘.‘rn"»‘fo,°."/~\\}r¢é»?o,{’/~\\‘.~r'*.’»?;,;.’// NSRS
)

& A
SR AN

goldfish: 0.002%
Pallace: 89%
Paper towel: 1.4%

X LAY A ;' NN "
NN S g
NN AN

@ output Layer

» Spatula: 0.001%

Chris Edwards, “Deep Learning Hunts for Signals Among the Noise,” Communications of the ACM, June 2018

An Artificial Neuron

Y Y Effectivel ight vect ltiplied

AN ctively wei vector multiplie
ST WG

e :‘!o“\ XA % :

AT ,' AN

Y~ ~ . tor mul
L NG NN

\\.,.///@\,,//,a\ T i by input vector to obtain a scalar
oA AA.A’A‘?"&\ g PR N

J May apply activation function to

»

OSSR 7o N X

XL '\‘"'&'\T;g '~ 9‘“', p : KRS

LANS QIS @A G U GO, output

AL ey “‘ “.- \u, .0./‘ “‘ “T v,' ‘,‘(“_ 2 o
/,/}eﬂ\wyg“s\&w//;«w&\g IEN

4“\\ .:-%"A A‘\\‘ PN A‘“\ ..IIIA A‘\‘! > d d | M M

TN > o Adds non-linearity

N\ /4

YO S\
S

. ReLU

R(z) =maz(0, 2)

ol 11 SR A

lo Woj
inputs | I m,\
_\‘\ SJ Yi g]_u_;. _Iﬁ _‘4 ._IZ. : .0 é ;1 é | ED . D 5 1
]n Wni - - - " ’
Sigmoid Rectified Linear Unit
B fﬁﬂifffﬁ

(ReLU)

bias

Jed Fox, “Neural Networks 101,” 2017

Convolution Layer

3|3
= 8| <
)
e 0
£
o
o)
o o[O O | <
m o < o | O
c
S SN
._ml LN [O
@) N e | N
|8 2|
[E TR EEEEY
VLV VLN
AT
o0 R
Bl
Trs /N
C 333 T T
& o TL UL
m. i3z /m
c £
O §
5 :
Ie) €
S TErEEEE,
S LR 1
S LA 82
BaDT Ah

Source pixel

Convolution Example

Convolution Input map
Filter
1]2]3 0 1101
2101 X 2 1lo]o0
5(-2|4 5 21115
41118 |4]2]38
slol1]|5]|8]3
o|lo|o|5]2]|6

Typically adds zero padding to source matrix
to maintain dimensions

Output map

44 | -1

Channel partial sum[0][0] =

1x0 +2x1 +3x0
+(-2)x2+0x4 +(-1)x3
+5x5 +(-2)x2+4x7
= 44

Multidimensional Convolution

d “Feature Map” usually has multiple layers
o Animage has R, G, B layers, or “channels”

(d One layer has many convolution filters, which create a multichannel
output map

Input feature map 3x3x3 filter Output feature map

Multiple Convolutions

— j‘> Output feature map 0

Input feature map

Filter 1

Output feature map 1

Example Learned Convolution Filters

Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012

Multidimensional Convolution

Filter bank (to be learned) Feature maps

Image found online. Original source unknown

Computation in the Convolution Layer

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) { // Input feature map row
for(x=0; x<H; x++) { // Input feature map column
for(j=0; j<R; j++) { // Weight filter row
for(i=0; i<R; i++) { // Weight filter column
O[n][m][x][y] += W[m][c][i][j] * I[n][c][y+j][x+i]}}}}}}}

Pooling Layer

(J Reduces size of the feature map
o Max pooling, Average pooling, ...

Max pooling example

31| 7 (44|33

65 | 35|40 | 46 > 65 | 46
46 |1 29 | 32 | 30 46 | 64
24 |49 | 8 | 64

Real Convolutional Neural Network
-- AlexNet

o . 3\ 3‘" >)
5\ N R 3
5 S 3
: A 197 197 2048 2048 \dense
5 27 _ ,J‘x_“.':"‘i\.
N A Y E 13 13
5 - 3\ Y. ‘ ‘\“ ?_‘_,‘
224 sl [3| BN 3 | N R
N N 13 ‘ dense’| |dense g
27 EAV I 3 ”“”13. 2
3 I 1000
192 192 128 Max
: 2048 2048
Maxl 128 Max pooling
pooling pooling
48
96 11x11x3 kernels 256 5x5x48 384 3x3x128

[

Simplified intuition: Higher order information at later layer

Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012

Real Convolutional Neural Network
-- VGG 16

224 x224x3 224 x224x64

Contains 138 million weights and
15.5G MACs to process one 224 x 224 input image

112 x 128

28 X 28 x 512 TxXTx512

=4
rlaf 1L4 - Quﬂ%' 1x1x4096 1x1x1000

@ convolution+ReLU

@ max pooling
| fully connected+ReLU

' lJ softmax

Heuritech blog (https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/)

4-layer residual
|"1!5|:\-

There are Many, Many Neural Networks

J GoogleNet, ResNet, YOLO, ...
o Share common building blocks, but look drastically different

il m;ugg gty
H H I e
! i ggagﬁﬁﬁ ﬁgaggaﬂ 9
&@ﬁ ENHMQ ? GoogleNet (ImageNet 2014 winner)

ResNet
(ImageNet 2015 winner)

Beware/Disclaimer on Accelerators

 This field is advancing very quickly/messy right now

1 Lots of papers/implementations always beating each other, with
seemingly contradicting results
o Eyes wide open!

The Need For Neural Network Accelerators

d Remember: “VGG-16 requires 138 million weights and 15.5G MACs to
process one 224 x 224 input image”

o CPU at 3 GHz, 1 IPC, (3 Giga Operations Per Second — GOPS): 5+ seconds per image

o Also significant power consumption!
* (Optimistically assuming 3 GOPS/thread at 8 threads using 100 W, 0.24 GOPS/W)

CPU
(Intel GPU NeuFlow on

NeuFlow on

DuoCore, | (GTX480) | (GT335m) |Xilinx Virtex 6 'BN:(::se:Sm
2.7GHz) P * Old data (2011), and performance

Real GOPs 1.1 294 54 147 1164 varies greatly by implementation, some
Power (W) 30 220 30 10 5 reporting 3+ GOPS/thread on an i7

GOPs/W 0.04 1.34 1.8 14.7 230 Trend is still mostly true!

Farabet et. al., “NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision”

Two Major Layers

(d Convolution Layer
o Many small (1x1, 3x3, 11x11, ...) filters

d Fully-Connected Layer

o N-to-N connection between all neurons, large number of weights

Conv:

Input map

g

Filters

Output map

FC:

* Small number of weights per filter, relatively small number in total vs. FC
o Over 90% of the MAC operations in a typical model

Weights

Input
vector

Output
vector

Systolic Array Design for Convolutions

O for padding -a=sssusss
-------- » Convolved feature map
- =) + freeeeees
< < CTYPERE Row buffer <
< < € Row buffer <
S N N P TTIIIT Row buffer e Input

Very efficient design!

BUT BRITTLE! Above design only works for 3x3 conv
and not for FC (Resource fragmentation!)

Spatial Mapping of General-Purpose
Compute Units

(1 Map both convolutions and FC to matrix
multiplications

Memory

J Typically a 2D matrix of Processing Elements

o Each PE is a simple multiply-accumulator
o Extremely large number of PEs
o Very high peak throughput!

d Is memory the bottleneck (Again)?

/

Processing Element

Memory Access Is (Typically) the Bottleneck
(Again)

(J 100 GOPS requires over 300 Billion weight/activation accesses
o Assuming 4 byte floats, 1.2 TB/s of memory accesses

d AlexNet requires 724 Million MACs to process a 227 x 227 image, over 2
Billion weight/activation accesses
o Assuming 4 byte floats, that is over 8 GB of weight accesses per image
o 240 GB/s to hit 30 frames per second

d An interesting question:
o Can CPUs achieve this kind of performance?
o With SIMD and good caching, YES!, but not at low power

“About 35% of cycles are spent waiting for weights to load from
memory into the matrix unit ...” —Jouppi et. al., Google TPU

Spatial Mapping of Compute Units 2

Memory

A A

A\ 4 A\ 4

A

\ 4

A

\ 4

A

A

\ 4

A
\ 4

/

[
>

Register file

Processing Element

\

<
<«

B
»

d Optimization 1: On-chip network moves
data (weights/activations/output) between
PEs and memory for reuse

(1 Optimization 2: Small, local memory on
each PE

o Typically using a Register File, a special type of
memory with zero-cycle latency, but at high
spatial overhead

J Cache invalidation/work assignment... how?

o Computation is very regular and predictable

A class of accelerators deal only with problems that fit entirely in
on-chip memory. This distinction is important.

Different Strategies of Data Reuse

J Weight Stationary

o Try to maximize local weight reuse

J Output Stationary
o Try to maximize local partial sum reuse

(J Row Stationary
o Try to maximize inter-PE data reuse of all kinds

(J No Local Reuse

o Single/few global on-chip buffer, no per-PE register file and its space/power
overhead

Terminology from Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Weight Stationary

J Keep weights cached in PE register files
o Effective for convolution especially if all weights can fit in PEs

(J Each activation is broadcast to all PEs, and computed partial sum is
forwarded to other PEs to complete computation

o Intuition: Each PE is working on an adjacent position of an input row ,

Weight stationary convolution for a row in the convolution |

Global Buffer

Partial sum of a previous
activation row if any

PE Partial sum for stored for
next activation row, or
final sum

nn-X, nuFlow, and others

Output Stationary

J Keep partial sums cached on PEs — Work on subset of output at a time
o Effective for FC layers, where each output depend on many input/weights
o Also for convolution layers when it has too many layers

J Each weight is broadcast to all PEs, and input relayed to neighboring PEs

o Intuition: Each PE is working on an adjacent position in an output sub-space o
cache

/

4

Global Buffer

Activation X

= s EE e ENE

Psum Weights Input Output
vector vector

ShiDianNao, and others

Row Stationary

J Keep as much related to the same filter row cached... Across PEs

o Filter weights, input, output... Input Fmap
Filter Partial Sums
d Not much reuse in a PE aboc
o Weight stationary if filter row * -

fits in register file

Reg File PE

, =@
] N

¢V

Eyeriss, and others

Row Stationary

] Lots of reuse across different PEs

o Filter row reused horizontally
o Input row reused diagonally
o Partial sum reused vertically

d Even further reuse by
interleaving multiple input
channels and multiple filters

Row 1/ Row 2/ Row 3
T PE 1 T PE 4 T PE 7
Row1j Row1 |WRow1g Row2 |M[Row1y Row3 _
I PE 2 I PES5 I PE 8
Row2j; Row2 |WRow2i Row3 |M[Row2y Rowd
I PE 3 I PE 6 I PE 9
Row3y Row3 |M[Row3(Row4 |MRow3y Row5

B«] = B B~ = R B =

No Local Reuse

d While in-PE register files are fast and power-efficient, they are not space
efficient

1 Instead of distributed register files, use the space to build a much larger
global buffer, and read/write everything from there

Global Buffer

Weight " L
Activation ¥

Google TPU, and others

Google TPU Architecture (v1 for simplicity)
== oomaormM s ||

</ 30 GiBls
14 GiB/s GiBls 2
DDR3-2133 Weight FIFO
< > [Interfaces] :> [(Weight Fetcher)
B—a
. @ DT |
x Unified 167 Matrix Multiply
3 10GiB/s | Buffer Systolic |GiB/ Unit
14 GiB/s 14 GiB/s g (Local Dt (64K per cycle)
é Storage) °
3 - - 4 / r Accumulators ‘
t ! Activation ‘
5 167 GiB/s r S
— —— Normalize / Pool
[] oft-chip O J
[] pata Butfer
[E] Computation) fe———]
. Control

Static Resource Mapping

~- CNN Conflguratlons -

Global Buffer

e e i
o obs

sefecfecfs
THETT

Optimization
Compiler

(Mapper)

S mpbe oy

Filter 1 Fmap 1

Multiple channels: [EIEITINITIN * IR - -

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Map And Fold For Efficient Use of Hardware

Replication Folding
AlexNet z AlexNet
Layer 3-5 ST Layer 2 ST 5

R

Unused PEs
are
Clock Gated

Physical PE Array Physical PE Array

Requires a flexible on-chip network

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Overhead of Network-on-Chip Architectures

Eyeriss
PE

-

Throughput

Power Efficiency Comparisons

J Any of the presented architectures reduce memory pressure enough that
memory access is no longer the dominant bottleneck

o Now what’s important is the power efficiency

Data Movement Energy Cost

{ 500x
Bufier 10%
PE 3x
RF ALU 1%
ALU 1x (Reference)

Goal becomes to reduce as much DRAM access as possible!

Joel Emer et. al., “Hardware Architectures for Deep Neural Networks,” tutorial from ISCA 2017

Power Efficiency Comparisons

Normalized
Energy/MAC I I

RF
W NoC
W buffer
» DRAM
m ALU

* Some papers report different numbers [1]

S, 0S; 0S. where NLR with a carefully designed global
on-chip memory hierarchy is superior.
DNN Dataﬂows [1] Yang et. al., “DNN Dataflow Choice Is
Overrated,” ArXiv 2018

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Power Consumption Comparison Between
Convolution and FC Layers

] Data reuse in FCin

2.0e10 . Total Energy oh v |
80% 4= = 20% inherently low
1.5e10 = ALU o Unless we have enough on-
:] RF chip buffers to keep all
Normalized .
Energy 10c10 [] NoOC weights, systems methods

(1 MAC = 1) = buffer are not going to be enough

0.5e10 = DRAM

CONV Layers

FC Layers

RF dominates

DRAM dominates

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Next: Model Compression

	Slide 1: CS 250B: Modern Computer Systems Hardware Acceleration Case Study Neural Network Accelerators
	Slide 2: Usefulness of Deep Neural Networks
	Slide 3: Convolutional Neural Network for Image/Video Recognition
	Slide 4: ImageNet Top-5 Classification Accuracy Over the Years
	Slide 5: Convolutional Neural Networks Overview
	Slide 6: Training vs. Inference
	Slide 7: Deep Neural Networks (“Fully Connected”*)
	Slide 8: An Artificial Neuron
	Slide 9: Convolution Layer
	Slide 10: Convolution Example
	Slide 11: Multidimensional Convolution
	Slide 12: Multiple Convolutions
	Slide 13: Example Learned Convolution Filters
	Slide 14: Multidimensional Convolution
	Slide 15: Computation in the Convolution Layer
	Slide 16: Pooling Layer
	Slide 17: Real Convolutional Neural Network -- AlexNet
	Slide 18: Real Convolutional Neural Network -- VGG 16
	Slide 19: There are Many, Many Neural Networks
	Slide 20: Beware/Disclaimer on Accelerators
	Slide 21: The Need For Neural Network Accelerators
	Slide 22: Two Major Layers
	Slide 23: Systolic Array Design for Convolutions
	Slide 24: Spatial Mapping of General-Purpose Compute Units
	Slide 25: Memory Access is (Typically) the Bottleneck (Again)
	Slide 26: Spatial Mapping of Compute Units 2
	Slide 27: Different Strategies of Data Reuse
	Slide 28: Weight Stationary
	Slide 29: Output Stationary
	Slide 30: Row Stationary
	Slide 31: Row Stationary
	Slide 32: No Local Reuse
	Slide 33: Google TPU Architecture (v1 for simplicity)
	Slide 34: Static Resource Mapping
	Slide 35: Map And Fold For Efficient Use of Hardware
	Slide 36: Overhead of Network-on-Chip Architectures
	Slide 37: Power Efficiency Comparisons
	Slide 38: Power Efficiency Comparisons
	Slide 39: Power Consumption Comparison Between Convolution and FC Layers
	Slide 40: Next: Model Compression

