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Many slides adapted from 
Hyoukjun Kwon‘s Gatech “Designing CNN Accelerators”



Usefulness of Deep Neural Networks

❑ No need to further emphasize the obvious



Convolutional Neural Network for 
Image/Video Recognition



ImageNet Top-5 Classification Accuracy
Over the Years

image-net.org “ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017,” 2017

AlexNet, The Beginning

15 million images 1000 classes in the ImageNet challenge

“The first* fast** 
GPU-accelerated Deep Convolutional Neural Network
to win an image recognition contest



Convolutional Neural Networks Overview
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Training vs. Inference

❑ Training: Tuning parameters using training data
o Backpropagation using stochastic gradient descent is the most popular algorithm

o Training in data centers and distributing trained data is a common model*

o Because training algorithm changes rapidly, GPU cluster is the most popular 
hardware (Low demand for application-specific accelerators)

❑ Inference: Determining class of a new input data
o Using a trained model, determine class of a new input data

o Inference usually occurs close to clients

o Low-latency and power-efficiency is required 
(High demand for application specific accelerators)



Deep Neural Networks (“Fully Connected”*)

Chris Edwards, “Deep Learning Hunts for Signals Among the Noise,” Communications of the ACM, June 2018

❑ Each layer may have a different number of neurons
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An Artificial Neuron

❑ Effectively weight vector multiplied 
by input vector to obtain a scalar

❑ May apply activation function to 
output
o Adds non-linearity

Sigmoid Rectified Linear Unit
(ReLU)

Jed Fox, “Neural Networks 101,” 2017



Convolution Layer
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Convolution Example
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5 2 6 Channel partial sum[0][0] = 
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Typically adds zero padding to source matrix 
to maintain dimensions 

Convolution
Filter

Input map Output map

× =



Multidimensional Convolution

❑ “Feature Map” usually has multiple layers
o An image has R, G, B layers, or “channels”

❑ One layer has many convolution filters, which create a multichannel 
output map

1 2 3

-2 0 -1

5 -2 4

Input feature map 3x3x3 filter

×

Output feature map

=



Multiple Convolutions

Filter 0

Filter 1

Input feature map

Output feature map 0

Output feature map 1



Example Learned Convolution Filters

Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012



Multidimensional Convolution

Image found online. Original source unknown



Computation in the Convolution Layer

for(n=0; n<N; n++) { // Input feature maps (IFMaps)    
  for(m=0; m<M; m++) { // Weight Filters
    for(c=0; c<C; c++) { // IFMap/Weight Channels      
      for(y=0; y<H; y++) {  // Input feature map row        
        for(x=0; x<H; x++) {  // Input feature map column
          for(j=0; j<R; j++) {  // Weight filter row 
            for(i=0; i<R; i++) {  // Weight filter column              
               O[n][m][x][y] += W[m][c][i][j] * I[n][c][y+j][x+i]}}}}}}}



Pooling Layer

❑ Reduces size of the feature map
o Max pooling, Average pooling, …
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Max pooling example



Real Convolutional Neural Network
-- AlexNet

Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012

96 11x11x3 kernels 256 5x5x48 384 3x3x128 …

Simplified intuition: Higher order information at later layer



Real Convolutional Neural Network
-- VGG 16

Heuritech blog (https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/)

Contains 138 million weights and 
15.5G MACs to process one 224 × 224 input image



There are Many, Many Neural Networks

❑ GoogLeNet, ResNet, YOLO, …
o Share common building blocks, but look drastically different

GoogLeNet (ImageNet 2014 winner)

ResNet 
(ImageNet 2015 winner)



Beware/Disclaimer on Accelerators

❑ This field is advancing very quickly/messy right now

❑ Lots of papers/implementations always beating each other, with 
seemingly contradicting results
o Eyes wide open!



The Need For Neural Network Accelerators

❑ Remember: “VGG-16 requires 138 million weights and 15.5G MACs to 
process one 224 × 224 input image”
o CPU at 3 GHz, 1 IPC, (3 Giga Operations Per Second – GOPS): 5+ seconds per image

o Also significant power consumption! 
• (Optimistically assuming 3 GOPS/thread at 8 threads using 100 W, 0.24 GOPS/W)

Farabet et. al., “NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision”

* Old data (2011), and performance 
varies greatly by implementation, some 
reporting 3+ GOPS/thread on an i7
Trend is still mostly true!



Two Major Layers

❑ Convolution Layer
o Many small (1x1, 3x3, 11x11, …) filters

• Small number of weights per filter, relatively small number in total vs. FC

o Over 90% of the MAC operations in a typical model

❑ Fully-Connected Layer
o N-to-N connection between all neurons,  large number of weights

* = =×

Input map Output mapFilters Input
vector

Weights Output 
vector

FC:Conv:



Systolic Array Design for Convolutions

Row buffer

Row buffer

Row buffer

+

Input

Convolved feature map
0 for padding

Very efficient design!

BUT BRITTLE! Above design only works for 3x3 conv
and not for FC (Resource fragmentation!)



Spatial Mapping of General-Purpose 
Compute Units

Memory
❑ Map both convolutions and FC to matrix 

multiplications

❑ Typically a 2D matrix of Processing Elements
o Each PE is a simple multiply-accumulator

o Extremely large number of PEs

o Very high peak throughput! 

❑ Is memory the bottleneck (Again)? 

Processing Element



Memory Access is (Typically) the Bottleneck
(Again)

❑ 100 GOPS requires over 300 Billion weight/activation accesses
o Assuming 4 byte floats, 1.2 TB/s of memory accesses

❑ AlexNet requires 724 Million MACs to process a 227 x 227 image, over 2 
Billion weight/activation accesses
o Assuming 4 byte floats, that is over 8 GB of weight accesses per image

o 240 GB/s to hit 30 frames per second

❑ An interesting question: 
o Can CPUs achieve this kind of performance?

o With SIMD and good caching, YES!, but not at low power

“About 35% of cycles are spent waiting for weights to load from 
memory into the matrix unit …” – Jouppi et. al., Google TPU



Spatial Mapping of Compute Units 2

Memory
❑ Optimization 1: On-chip network moves 

data (weights/activations/output) between 
PEs and memory for reuse

❑ Optimization 2: Small, local memory on 
each PE
o Typically using a Register File, a special type of 

memory with zero-cycle latency, but at high 
spatial overhead

❑ Cache invalidation/work assignment… how?
o Computation is very regular and predictable

Processing Element

Register file A class of accelerators deal only with problems that fit entirely in 
on-chip memory. This distinction is important.



Different Strategies of Data Reuse

❑ Weight Stationary
o Try to maximize local weight reuse

❑ Output Stationary
o Try to maximize local partial sum reuse

❑ Row Stationary
o Try to maximize inter-PE data reuse of all kinds

❑ No Local Reuse
o Single/few global on-chip buffer, no per-PE register file and its space/power 

overhead

Terminology from Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017



Weight Stationary

❑ Keep weights cached in PE register files
o Effective for convolution especially if all weights can fit in PEs

❑ Each activation is broadcast to all PEs, and computed partial sum is 
forwarded to other PEs to complete computation
o Intuition: Each PE is working on an adjacent position of an input row

Weight stationary convolution for a row in the convolution

Partial sum of a previous 
activation row if any Partial sum for stored for

next activation row, or
final sum

nn-X, nuFlow, and others



Output Stationary

❑ Keep partial sums cached on PEs – Work on subset of output at a time
o Effective for FC layers, where each output depend on many input/weights

o Also for convolution layers when it has too many layers

❑ Each weight is broadcast to all PEs, and input relayed to neighboring PEs
o Intuition: Each PE is working on an adjacent position in an output sub-space

=×

Input
vector

Weights Output 
vector

cached

ShiDianNao, and others



Row Stationary

❑ Keep as much related to the same filter row cached… Across PEs
o Filter weights, input, output…

❑ Not much reuse in a PE
o Weight stationary if filter row 

fits in register file

Eyeriss, and others



Row Stationary

❑ Lots of reuse across different PEs
o Filter row reused horizontally

o Input row reused diagonally

o Partial sum reused vertically

❑ Even further reuse by 
interleaving multiple input 
channels and multiple filters



No Local Reuse

❑ While in-PE register files are fast and power-efficient, they are not space 
efficient

❑ Instead of distributed register files, use the space to build a much larger 
global buffer, and read/write everything from there

Google TPU, and others



Google TPU Architecture (v1 for simplicity)



Static Resource Mapping

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017



Map And Fold For Efficient Use of Hardware

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

Requires a flexible on-chip network



Overhead of Network-on-Chip Architectures

Mesh

Crossbar Switch
Bus

Throughput 

PE

Eyeriss 
PE



Power Efficiency Comparisons

❑ Any of the presented architectures reduce memory pressure enough that 
memory access is no longer the dominant bottleneck
o Now what’s important is the power efficiency

Goal becomes to reduce as much DRAM access as possible!

Joel Emer et. al., “Hardware Architectures for Deep Neural Networks,” tutorial from ISCA 2017



Power Efficiency Comparisons

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

* Some papers report different numbers [1] 
where NLR with a carefully designed global 
on-chip memory hierarchy is superior.
[1] Yang et. al., “DNN Dataflow Choice Is 
Overrated,” ArXiv 2018



Power Consumption Comparison Between 
Convolution and FC Layers

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE 2017

❑ Data reuse in FC in 
inherently low
o Unless we have enough on-

chip buffers to keep all 
weights, systems methods 
are not going to be enough



Next: Model Compression
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